

Potential Future Directions for the Division of Applied Science and Technology

John W. Haller, Ph.D.

Acting Director

Division of Applied Science and

Technology

NACBIB, May 25-26, 2005

Division of Applied Science and Technology

Magnetic Resonance Imaging

Magnetic/Biomagnetic/Bioelectric Devices

Surgical Technologies

Image-Guided Therapies and Interventions

Nuclear Medicine

Image Processing, Displays, and Perception

Molecular Probes and Imaging Agents

Optical Imaging and Spectroscopy

Ultrasound, Photoacoustics and Thermoacoustics

X-ray, Electron and Ion Beam (including CT)

Potential Future Directions

- Optical Imaging
- Imaging Agents
- Imaging Informatics
- Image-Guided Interventions

In vivo micro-imaging

Scope of the Imaging Agent Program

Imaging Agent Portfolio

- -contrast agent development and
- -molecular imaging agents

Scope of the Optical Imaging Program

Optical Imaging Portfolio

- Optical coherence tomography
- -Fluorescence imaging;
- -Multiphoton microscopy;
- -Infrared and near-infrared microscopy;
- -Microwave imaging;
- -Terahertz
- -Scanning probe microscopy;
- -Fiber optics.

Optical Imaging and Image Agent Portfolio

Optical Imaging	\$16M	59 Grants
Technologies		
Imaging Agents*	\$12.8 M	36 Grants

POTENTIAL FUTURE DIRECTION for OPTICAL IMAGING

In vivo OCT imaging

- Background: Optical Coherence Tomography (OCT) is prime for translation from the lab to in vivo imaging
- **Direction:** Develop *in vivo* OCT imaging technologies (e.g., intravascular OCT of vulnerable plaques)

In Vivo Human Imaging (A) plaque indicated by the red arrow, and (B) viewed along the catheter length.

Courtesy: Professor Ishikawa (Kinki University Japan) Tetsuaki Tanimura MD and Joseph M. Schmitt PhD (Lightlab Imaging, Inc). Provided by Dr. Brezinski

Activatable Imaging Agents

- Background: Activatable agents allow imaging of specific cellular processes, such as enzyme activities, gene expressions, etc.
- Direction: Develop new "smart," activatable imaging agents that are activated in response to changes in the local biochemical environment.

Scope of the X-Ray, Nuclear Medicine, Ultrasound Programs

X-Ray and X-ray CT

 Flat-panel imager/digital radiography development; Digital tomosynthesis, Flat-panel CT; CT reconstruction algorithms; CT dose reduction; Dosimetry.

Nuclear Medicine

 New crystal scintillators, novel image-receptor designs; New collimator designs; Improved and multi-modality animal systems; Radiopharmaceuticals for molecular imaging; Dualisotope imaging; Dosimetry.

Ultrasound

 Very high frequency (50 – 200 MHz) US; Piezoelectric/capacitive element and transducer development; Novel imaging/Doppler systems; US contrast agents/harmonic imaging; Elastography, tissue property quantification; Focused ultrasound for therapy;

X-ray, CT, Nuclear Medicine, PET, Ultrasound Portfolio

Nuclear Medicine	\$22.2M	68 Grants
(inc. PET)		
Ultrasound	\$12.0M	36 Grants
X-Ray and CT	\$12.3M	38 Grants

Imaging informatics

- Background: Imaging systems (e.g., CT, MRI)
 have developed to a point where there is a data
 overload.
- Direction: Support of imaging informatics, computer-aided detection and diagnosis, and visualization tools for biomedical imaging.

Scope of the Image-Guided Interventions (IGI) Program

- IGI Devices/Tools
 - e.g., robotics, probe tracking, imaging hardware and software
- IGI Applications
 - Image-Guided Surgery
 - Cancer Treatment or Biopsy
 - Cardiovascular Interventions
 - -Neuro-Interventions

Image-Guided Interventions (IGI) Portfolio

IGI \$12M 38* grants

* 11 R21 Grants expire Aug. 31

Combine image-based diagnosis with imageguided treatment

- •Background: In some common life-threatening conditions time-to-treatment is a critical factor (e.g., stroke, infarct, trauma).
- •Direction: Combine detection, diagnosis and treatment in a single patient visit.

1) Diagnostic MRI.

Before

2) Image-guided catheter tip

3a-b) MRA assessment of treatment effect.

POTENTIAL FUTURE DIRECTIONS Real-time Imaging for IGI

- •Background: IGI imaging modes need to operate in real time in the OR. Need fast acquisition/ segmentation, multi-modality image fusion, modeling of tissue deformation, etc.
- •Directions: Develop technologies for 4D (real-time 3D) imaging for image-guided interventions

Scope of the MRI, EPR Portfolio

- MRI Physiological imaging
- MR spectroscopy
- RF coil design
- -fMRI

- Solid-state Nuclear Magnetic Resonance (NMR)
- Electron Paramagnetic Resonance (EPR)

MRI, EPR Portfolio

MRI Techniques	\$17.7 M	55 grants
MRI Instruments	\$11.0 M	24 grants
fMRI	\$5.2 M	17 grants
in vivo EPR	\$5.3 M	9 grants
Solid State NMR	\$8.0 M	18 grants
Other (synchrotron, in vitro EPR mass spect, etc.	\$6.5	12 grants

Clinical Microimaging of Internal Organs

- Background: Early detection and characterization of disease is difficult because of poor sensitivity and spatial resolution of imaging tools for internal organs (e.g., pancreatic islet cell imaging, liver cancer)
- **Direction:** Microimaging with small "microdevices" that are inserted into the body. Multimodal, image-guided devices with high sensitivity and spatial resolution.
- (e.g. very high frequency (50–200 MHz), very high-resolution ultrasound,
 OCT, MRI microcoils)

DAST Potential Future Directions

- 1. In vivo OCT imaging
- 2. Activatable Imaging Agents
- 3. Imaging Informatics
- 4. Combining diagnostic imaging with image-guided treatment
- 5. Real-time Imaging for Image-Guided Interventions
- 6. Clinical Microimaging of Internal Organs